Robust Semi-supervised Learning by
Wisely Leveraging Open-set Data

Yang Yang, Member, IEEE, Nan Jiang, Yi Xu, and De-Chuan Zhan

Index Terms—Semi-supervised Learning, OOD Detection, Open-set Data.

REFERENCES

APPENDIX A
PROOF OF THE THEOREM 1

Proof. (a) Following the standard analysis, we have the
following inequality in expectation
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where (i) is due to the smoothness of loss function £ in
Assumption ??; (ii) is due to the update of SGD; (iii) is due

to E[g(0)] = VL(0); (iv) is due to n < 1/L. By the definition
of g(0;) and the convexity of norm || - ||?, we know
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where the second inequality is due to Assumptions ?? and
?2. Therefore, by (1) and @) we have

E[L(0141) — L(6:)]
< 2 (1-nza-n T myveen )+
< MIgicie,) — £(0.)] + TR (3)

2 )
where the last inequality is due to Assumption ?? and 7 =
Therefore, we have
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Since v is large enough, then we know that
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Let’s consider a special case of n+m+m =
2(1-XN)(re+(1—1)v)L then lmplylng
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(b) Next, let’s consider the case without either far OOD
data or near OOD data, i.e, A = 1. Then, following the
similar analysis in (a), we have
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where the last inequality is due to Assumption ??. Therefore,
we have
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By setting n = TQM log (W),
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(c) Finally, let’s consider the case without far OOD data
(but with near OOD data), i.e., 7 = 1. Then, following the
similar analysis in (a), we have
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where the last inequality is due to Assumption ?? and 7 <
m. Therefore, we have
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