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Proof. (a) Following the standard analysis, we have the
following inequality in expectation

E[L(θt+1)− L(θt)]
(i)
≤E[⟨θt+1 − θt,∇L(θt)⟩] +

L

2
E[∥θt+1 − θt∥2]

(ii)
= − ηE[⟨ĝ(θt),∇L(θt)⟩] +

η2L

2
E[∥ĝ(θt)∥2]

(iii)
= − η(1− ηL

2
)∥∇L(θt)∥2 +

η2L

2
E[∥∇L(θt)− ĝ(θt)∥2]

(iv)
≤ − η

2
∥∇L(θt)∥2 +

η2L

2
E[∥∇L(θt)− ĝ(θt)∥2], (1)

where (i) is due to the smoothness of loss function L in
Assumption ??; (ii) is due to the update of SGD; (iii) is due
to E[ĝ(θ)] = ∇L(θ); (iv) is due to η ≤ 1/L. By the definition
of ĝ(θt) and the convexity of norm ∥ · ∥2, we know

E[∥∇L(θt)− ĝ(θt)∥2]
≤λE[∥∇L(θt)− gid(θt)∥2]
+ (1− λ)(τE[∥∇L(θt)− gfr(θt)∥2

+ (1− τ)E[∥∇L(θt)− guf(θt)∥2])

≤λσ2 + (1− λ)[τ(
ϵ

2
∥∇L(θt)∥2 + σ2)

+ (1− τ)(
ν

2
∥∇L(θt)∥2 + σ2)]

=σ2 + (1− λ)
τϵ+ (1− τ)ν

2
∥∇L(θt)∥2, (2)
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where the second inequality is due to Assumptions ?? and
??. Therefore, by (1) and (2) we have

E[L(θt+1)− L(θt)]

≤− η
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(
1− ηL(1− λ)

τϵ+ (1− τ)ν

2

)
E[∥∇L(θt)∥2] +

η2Lσ2

2

≤− µη

2
E[L(θt)− L(θ∗)] +

η2Lσ2

2
, (3)

where the last inequality is due to Assumption ?? and η =
1

(1−λ)(τϵ+(1−τ)ν)L . Therefore, we have

E[L(θt+1)− L(θ∗)] ≤
(
1− µη

2

)
E[L(θt)− L(θ∗)] +

η2Lσ2

2
,

(4)

which implies

E[L(θn+m+m′+1)− L(θ∗)]

≤ exp (−µη(n+m+m′)/2) (L(θ0)− L(θ∗)) +
ηLσ2

µ
, (5)

Since ν is large enough, then we know that
η′ := 1

(1−λ)(τϵ+(1−τ)ν)L is small enough such that

exp (−µη′(n+m+m′)/2) ≫ Lσ2

(n+m+m′)µ2(L(θ0)−L(θ∗))
.

Thus, we have

E[L(θn+m+m′+1)− L(θ∗)]

≤ exp (−µη′(n+m+m′)/2) (L(θ0)− L(θ∗)) +
η′Lσ2

µ
(6)

Let’s consider a special case of n + m + m′ =
2(1−λ)(τϵ+(1−τ)ν)L

µ , then η′ = 2
(n+m+m′)µ , implying

E[L(θn+m+m′+1)− L(θ∗)] ≤ O (L(θ0)− L(θ∗)) (7)

(b) Next, let’s consider the case without either far OOD
data or near OOD data, i.e., λ = 1. Then, following the
similar analysis in (a), we have

E[L(θt+1)− L(θt)]
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2
, (8)
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where the last inequality is due to Assumption ??. Therefore,
we have

E[L(θt+1)− L(θ∗)] ≤
(
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2
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η2Lσ2

2
,

(9)

which implies
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ηLσ2

µ
,
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By setting η = 2
nµ log
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)
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(c) Finally, let’s consider the case without far OOD data
(but with near OOD data), i.e., τ = 1. Then, following the
similar analysis in (a), we have

E[L(θt+1)− L(θt)]
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where the last inequality is due to Assumption ?? and η ≤
1

(1−λ)ϵνL . Therefore, we have
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which implies

E[L(θn+m+1)− L(θ∗)]

≤ exp (−µη(n+m)/2) (L(θ0)− L(θ∗)) +
ηLσ2

µ
, (14)
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